

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS
SECURE DISTRIBUTION OF OPEN SOURCE

INFORMATION

by

Jason Rogers

December 2004

 Thesis Advisor: George Dinolt
 Second Reader: Timothy Levin

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Secure Distribution of Open Source Information

6. AUTHOR(S) Rogers, Jason

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Cryptographic protocols provide security services through the application of cryptography. When designing a cryptographic
protocol, the requirements are, often, specified informally. Informal specification can lead to incorrect protocols from
misinterpreting the security requirements and environmental assumptions. Formal tools have been shown to reduce ambiguity.

In this paper, a cryptographic protocol, called the Secure Open Distribution Protocol (SODP), is developed to provide
authentication services for open source information. A formal development process is proposed to aid in the design of the
SODP. The Strand Space method has been selected as the formal mechanism for specifying requirements, architecting a
protocol design, and assuring the correctness of the protocol. First, the informal authentication requirements are modeled as
agreement properties. Next, Authentication Tests, a Strand Space concept, are introduced to aid in the design of the SODP.
Finally, a formal proof is constructed to assure that the SODP has satisfied all requirements.

The result of the development process proposed in this paper is a cryptographic protocol that can be used to securely distribute
open source information. Also, the Strand Space method is demonstrated as a viable option for the formal development of a
cryptographic protocol.

15. NUMBER OF
PAGES
 76

14. SUBJECT TERMS

Formal Methods, Protocol Analysis, Cryptography

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SECURE DISTRIBUTION OF OPEN SOURCE INFORMATION

Jason Lee Rogers
Civilian, Federal Cyber Corps

B.S, North Central College, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2004

Author: Jason Lee Rogers

Approved by: George Dinolt
 Thesis Advisor

 Timothy Levin
 Second Reader

 Peter Denning
 Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Cryptographic protocols provide security services through the application of

cryptography. When designing a cryptographic protocol, the requirements are, often,

specified informally. Informal specification can lead to incorrect protocols from mis-

interpreting the security requirements and environmental assumptions. Formal tools

have been shown to reduce ambiguity.

In this paper, a cryptographic protocol, called the Secure Open Distribution

Protocol (SODP), is developed to provide authentication services for open source

information. A formal development process is proposed to aid in the design of the

SODP. The Strand Space method has been selected as the formal mechanism for

specifying requirements, architecting a protocol design, and assuring the correctness

of the protocol. First, the informal authentication requirements are modeled as agree-

ment properties. Next, Authentication Tests, a Strand Space concept, are introduced

to aid in the design of the SODP. Finally, a formal proof is constructed to assure that

the SODP has satisfied all requirements.

The result of the development process proposed in this paper is a cryptographic

protocol that can be used to securely distribute open source information. Also, the

Strand Space method is demonstrated as a viable option for the formal development

of a cryptographic protocol.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION . 1

A. TRUSTED COMPUTING EXEMPLAR PROJECT 2

B. PROTOCOLS . 3

C. CRYPTOGRAPHIC PROTOCOLS 4

D. OVERVIEW OF THESIS . 6

II. COMMUNICATION PROTOCOLS 7

III. FORMAL METHODS . 13

A. LOGICS . 13

B. COMMUNICATING STATE MACHINES 14

C. STRAND SPACES . 16

1. Strands . 16

2. Bundles . 19

3. The Penetrator . 21

4. Cryptographic Assumptions 22

D. SUMMARY . 23

IV. REQUIREMENTS MODELING 25

A. FORMAL REQUIREMENTS MODELING 25

B. STRAND SPACE REQUIREMENTS MODEL 26

1. Agreement Properties . 27

2. Modeling Agreement Properties 27

C. SODP REQUIREMENTS . 28

1. Common Criteria Requirements 28

2. Modeling Common Criteria Requirements with Strand

Spaces . 30

D. SUMMARY . 31

vii

V. PROTOCOL DESIGN . 33

A. DESIGN PRINCIPLES . 33

B. LOGICAL DESIGN . 34

C. DESIGN USING STRAND SPACES 35

1. Authentication Tests . 35

2. Using Authentication Tests to Model Agreement 36

D. DESIGNING THE SODP USING STRAND SPACES 38

E. SUMMARY . 41

VI. FORMAL VERIFICATION . 43

A. MODEL CHECKING . 43

B. THEOREM PROVING . 44

C. PROTOCOL VERIFICATION USING STRAND SPACES . . . 45

D. VERIFYING THE SODP PROTOCOL 46

E. SUMMARY . 47

VII. CONCLUSION . 49

A. FUTURE WORK . 51

APPENDIX A. GLOSSARY . 53

LIST OF REFERENCES . 57

INITIAL DISTRIBUTION LIST . 61

viii

LIST OF FIGURES

1. TCP Header Format . 8

2. TCP 3-Way Handshake for Establishing a Connection 10

3. Communicating State Machines . 15

4. Needham-Schroeder-Lowe Public Key Protocol 16

5. Initiator and Responder Traces . 18

6. Graph Function . 19

7. Graph Example . 19

8. Penetrator Traces . 21

9. Lowe’s Agreement Properties modeled using Strand Spaces 29

10. The SODP Requirements Model . 31

11. Outgoing Authentication Test . 37

12. Incoming Authentication Test . 37

13. Initiator strand without Encryption . 38

14. Initiator strand with Encryption . 39

15. Secure Distribution protocol . 40

16. Secrecy Requirement Model . 52

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Founda-

tion under Grant No.DUE-0114018.

Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author and do not necessarily reflect the views of the National

Science Foundation.

I would like to thank my advisor George Dinolt for all his advice and encour-

agement. I know I can depend on further support for many years to come.

I would also like to thank the National Science Foundation and the Naval

Postgraduate School for giving me the opportunity to further my education and serve

my country.

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

I. INTRODUCTION

Information is the new global currency. Each day information is bought and

sold on a global marketplace called the Internet. Web sites are the brokers of the

information market, processing millions of transactions each day. Users, operating

behind electronic tellers, barter with web sites to gain valuable pieces of information.

Users make deposits by viewing advertisements, filling out forms, or handing over

credit card information. For every transaction the value of information is scrutinized.

The value of information is measured by its integrity and availability. The

timely nature of information requires that it be available and correct. If air traffic

information is incorrect or unavailable an aviator will have a difficult time avoiding

mid-air collisions. Therefore, the FAA invests millions each year to insure that air

traffic control system reports correct information in a timely manner.[Ref. 11] The

majority of information seekers, however, cannot afford to spend half that amount to

insure their availability demands.

The open source movement has eased availability demands by saturating the

Internet with free sources of information. Under the umbrella of a barrage of open

source licenses, like the GNU General Public License (GPL)[Ref. 12] and the Creative

Commons licenses[Ref. 7], books, software and even media is shared freely on the open

market. As open source information is shared, the number of available copies grows

without bounds. As the number of copies grow, the availability improves.

The improved availability, though, is not without consequence. Improved abil-

ity to share information also allows for the easy dissemination of all kinds of false

information. Patrons of open source information desire procedures for validating the

integrity of that information without disrupting availability.

1

A. TRUSTED COMPUTING EXEMPLAR PROJECT

The Trusted Computing Exemplar project [Ref. 8] is one patron interested

in the secure distribution of open source information. In 2002, it was recognized

by a group of researchers that the private and government sectors had not invested

a significant amount of time in the development of high assurance systems. Even

though consumers were slowly recognizing the need for security and reliability in their

computing systems, few in the industry understood how to develop such systems.

The Center of Information Security Research at the Naval Postgraduate School

decided to provide an example. The goal of the Trusted Computing Exemplar

(TCX)[Ref. 8] project is to educate others on the development of trusted comput-

ing systems through a worked example. One of the goals of the project will be the

“open distribution of project deliverables.” The successful sharing of the project de-

liverables will enable others to study the results of the project, so that future high

assurance initiatives are more likely. In order to securely provide this deliverable, a

secure distribution protocol for open source information is required.

The TCX has chosen the Common Criteria for Information Technology Secu-

rity Evaluation[Ref. 20] as the high assurance criteria to exemplify. The goal of the

Common Criteria is to establish a basis for evaluating information security products.

The Common Criteria provides assurance through documentation and evaluation.

The Common Criteria identifies 7 increasing levels of assurance, describing the evi-

dence that is required for a product to meet that level.

The documentation is produced in two distinct phases. In the first phase,

the developer defines product requirements and declares all procedures that will be

followed during the life-cycle of the product to satisfy each assurance requirement.

The second phase of documentation, provides the design documentation as well as the

evidence that the procedures have been followed. The documentation and product

are then given to an evaluator who determines if the evidence is sufficient for the

product to reach the desired level of assurance. For a product to be construed as high

2

assurance under the common criteria, it must satisfy the highest level of assurance.

The TCX project will develop a product that meets the requirements for EAL 7, the

highest level of assurance under the Common Criteria.

B. PROTOCOLS

Protocols dictate rules for achieving goals. For example, when a pilot wants

to land an aircraft, he must follow a protocol, a set of steps that he must take in

a specified order. The air traffic controller, who responds to the pilot request, is

following the same protocol under rules defined by his role.

The world is filled with protocols establishing the rules for withdrawing money,

making laws, and paying taxes, etc. The rules explain the steps participants must

complete in order for a desired goal to be met. When a participant chooses not to

follow the rules, the protocol should also enforce the proper consequence. If it does

not and the unruly participant is able to achieve some unauthorized behavior of the

system, the protocol should be fixed. The proper design and analysis of protocols

keeps money safe, the government running, and aircraft flying. In object oriented

computer languages, the methods defined for an object are the “protocol” that object

supports or accepts.

The growth of interconnected machines in the form of large networks of com-

puters - the INTERNET - has brought the importance of good protocol design to the

forefront. When engineers wanted the first two computers to communicate a protocol

- an agreement about the order and meaning of the messages to be exchanged - was

written. The communication was most likely symmetric, with the output tape of

one computer fed directly into the input tape of the other computer. When three

computers attempted to communicate, a more sophisticated protocol was required

to stop two computers from speaking at the same time. As the size and distance of

the networks grew, protocols were required to reduce latency, improve reliability, and

route messages accurately.

3

Today, millions of machines are able to communicate through a complex mesh

of protocols. The working groups of the Internet Engineering Task Force (IETF) have

been charged with making sense of the Internet by standardizing the communication

protocols that define it.[Ref. 4] Manned by volunteers of network designers, operators,

vendors and researchers the working groups seek to provide an open environment for

establishing protocol standards in the form of a “Request for Comments” (RFC)

documents. For example, RFC’s 793[Ref. 36] and 791[Ref. 35] provide a technical

specification of the Transport Control Protocol (TCP) and the Internet Protocol

(IP), the building blocks of the TCP/IP standard that carries the majority of Internet

traffic. For users requiring more security than is offered by the Internet Protocol (IP),

RFC 2401[Ref. 23] was created, which describes the IP Security Protocol (IPSEC).

IPSEC belongs to a class of protocols, called cryptographic protocols.

C. CRYPTOGRAPHIC PROTOCOLS

Cryptographic protocols are communication protocols that use cryptography.

Cryptography is the study of disguising, or encrypting, messages by changing the

form of the message. The original message is called the plain text, while the encrypted

version is called the cipher text. A strong cryptographic algorithm, or cryptosystem,

is one in which only an authorized party can transform, or decrypt, the cipher text

back into plain text. Modern cryptosystems use keys as an additional input into the

encryption algorithm when encrypting messages. Therefore, a single algorithm can be

used by multiple parties, each possessing a different key. Cryptosystems that use the

same key to encrypt and decrypt are called symmetric, while those that use different

keys are called asymmetric.

Information can be encrypted using a symmetric key to keep the contents secret

from those who don’t possess the key. Or a challenge message can be signed with a

private asymmetric key to authenticate the identity of the one who signed the key.

Security properties, like secrecy and authentication, are valuable when communicating

4

with parties across a global infrastructure, like the INTERNET. Including encryption

in communication protocols one can distribute these valuable security services to users

throughout the world.

The goals of a cryptographic protocol are to provide security services using

the message passing mechanism provided by communication protocols. For example,

the security goal for a symmetric key distribution protocol is to transmit keys to

participants on a distributed network, while keeping the contents secret. Another

goals for a key distribution will include assuring the integrity of the key, so the

correct key is received. Participants will also want to identify the source of the key,

so that the participant isn’t tricked into receiving false keys. The success of the key

distribution protocol relies on the ability to provide each of the subgoals.

IPSEC is a family of cryptographic protocols that, together, provide a collec-

tion of security services. For example, the Internet Key Exchange (IKE) protocol,

a member of the IPSEC family, is used to distribute keys used for digital signature,

public key encryption, and symmetric key encryption. The IP Encapsulating Security

Payload (ESP) protocol uses the keys distributed by IKE to encrypt data in order

for it to remain secret as it is transmitted between computers on a communication

network. If a flaw existed in the IKE protocol that allowed an authorized user to

read a symmetric key, then the ESP protocol would also be affected. Of course, even

a well written RFC can lead to insecure protocols.

As of September 2004, 3890 RFC’s have been published by the IETF, many

of them security related. Aside from the informal specification provided by the RFC,

proper implementation of protocols, including cryptographic protocols, is the respon-

sibility of vendors, and other implementors. Understanding the intricate relationships

among protocols, their participants, and the achieved outcome is a complicated task.

Formal tools have been shown to reduce complexity and ambiguity of informal

specifications, like RFC’s, and to focus the efforts of protocol analysts and designers.

In 1999[Ref. 30], Meadows used the NRL Protocol Analyzer to formally analyze the

5

IKE protocol. She uncovered several ambiguous statements in the specification given

in the RFC’s that could have led to possible attacks.

D. OVERVIEW OF THESIS

This paper will propose a process for developing cryptographic protocols. This

process will be used to produce a cryptographic protocol to handle the secure delivery

of open source information. Chapters II will describe the internals of communica-

tion protocols. Chapter III will describe communication protocols will introduce the

Strand Space method; the formal framework that has been selected to model require-

ments, architect the design, and prove correctness of the secure open distribution

protocol. The development of the SODP will be described in chapters IV through

VI. Chapter IV will outline the security requirements of the SODP using the Strand

Space method. Chapter V will suggest a possible design to satisfy the requirements

in Chapter IV. Chapter VI will apply formal analysis tools to prove the correctness of

the SODP. Chapter VII will conclude by summarizing the process and recommending

future research directives.

Using this information a working implementation of the SODP can be derived

to provide the open source community with a secure distribution mechanism. More

generally, this paper provides a worked example of how cryptographic protocols can

be developed.

6

II. COMMUNICATION PROTOCOLS

A communication protocol specifies rules for transferring information. The

rules govern the actions of participants engaging in the communication protocol.

Participants can be humans, or machines acting on behalf of their human users. The

telephone, for example, is one machine that acts as a participant in a communication

protocol on behalf of its user. Once the numbers have been dialed, the phone must

transmit messages across the communication network, built using wires and switches,

to ring the phone on the other end. People using the telephone use a protocol,

“Hello”, “Goodbye”, etc. that is layered on top of the telephone communications. In

this example, the user, the telephone, and the switches are each participants engaged

in a different protocol.

Layering protocols, as in the case of the telephone example, allows commu-

nication networks to remain flexible to meet new technologies and load demands.

Layering aggregates protocols with similar functions to the same layer. Interfaces

are used between layers to hide the internal functionality of the protocol. As long

as the protocol meets the requirements of the interface, it can be used to provide

functionality for that layer. In the telephone example, the microphone, headphone

and keypad provided an interface between the user and the telephone. Even if the

communication network was to change, as was the case with cellular phones, users

would still able to communicate.

The Transmission Control Protocol (TCP) [Ref. 36] is a communication pro-

tocol that can be used to exchange information between processes executing on a host

computer. The TCP is considered a Transport protocol, found on layer-4 of the Inter-

national Standard Organization’s Open System Interconnect (ISO/OSI) model.[Ref.

17] The TCP will be used to describe the structure and semantics of communication

protocols.

As a layer-4 protocol, the TCP must rely on the lower layers to transfer the

7

TCP message to the appropriate computer. The interface for the TCP protocol

defines four operations. The first two are for opening and closing connections. These

operations are used to establish a communication channel between two processes,

much like one does when making a telephone call. The second pair of operations are

for sending and receiving data on the established channel.

Protocol rules are specified in terms of format and order. Once a participant

has assumed a role, the protocol defines the sequence of transmission and reception

events and the order in which they should occur. Each event defines the message

format that the participant should send or expect to receive. The message format of

the TCP includes a header and a data section, as described in Figure 1.

Figure 1. TCP Header Format

8

The header information is used by participants, in conjunction with the pro-

tocols rules, to help construct the other messages specified by the protocol. The TCP

header includes a source port field and a destination port field. When a process wants

to establish a connection, it is bound to a specific port. The source port identifies the

process that send the TCP message, while the destination port tells which the process

the message should be delivered to. If a message arrives out of order or in the wrong

format, the protocol will define rules for handling either case. In the case of TCP,

the header includes a field for uniquely identifying messages, the sequence number,

as well as one for telling a participant the number of the last message received, the

acknowledgment number. This information can be used for handling out of order

packets.

Participants in communication protocols can take on many roles in the course

of a protocol. The two most common roles for communication protocols are that of

initiator and responder. To begin a protocol, a participant must initiate the conversa-

tion. This participant is bound to the rules of the protocol that dictate the behavior

of the initiator. Most often the first step for the initiator is to send a message that

notifies other participants that a protocol has begun. The TCP header includes con-

trol flags for instructing participants on how the message should be handle. The

SYN flag is used to identify the message used to initiate a TCP session. The mes-

sage passing to establish a TCP connection is illustrated in Figure 2. The values for

the sequence numbers, acknowledgment numbers, and control flags are listed in the

message contents.

9

Figure 2. TCP 3-Way Handshake for Establishing a Connection

10

Once the initiator has sent the SYN message, the participant who receives it

can choose whether or not to engage in the protocol by responding. If no participant

were to respond in a timely manner, the protocol will either terminate, try again,

or present the initiator with some set of options. The proper response is usually a

message whose format has been predetermined by the rules of the protocol. After a

process has received a SYN message in the TCP, a SYN-ACK message can be sent to

acknowledge the reception of the SYN packet. The initiator will then send an ACK

message, which acknowledges the receipt of the SYN, ACK packet. At this point the

three-way handshake is completed, and a TCP session is open. Particpants can now

use the TCP session to exchange messages between protocols.

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

III. FORMAL METHODS

Formal methods have been recognized as a valuable tool for reducing the com-

plexity of cryptographic protocols. The WIFT’98 Report[Ref. 15] describes a formal

method as an approach to developing computer systems that includes,

1. [A] notation with a well-defined syntax and semantics

2. some guidelines and procedures for using the notation

3. techniques for analyzing specifications expressed in the notation

Over the past couple decades, formal methods have been applied in ways in

the design and analysis of cryptographic protocols. Catherine Meadows finds that the

majority of formal methods used for cryptographic protocol development are based on

two fundamental aspects of Computer Science: logic and finite state automata.[Ref.

32]

A. LOGICS

Logics of knowledge and belief model the behavior of participants engaged in

a cryptographic protocol. Syverson[Ref. 40], through Carnap[Ref. 5], states:

a logical system is characterized by stating its formation rules and its
transformation rules. The formation rules provide us with a list of recognized
characters and decidable means for delineating the grammatically well formed
sentences (or formulae). The transformation rules provide us with a list of
axiomatic sentences and (not necessarily decidable) means for delineating those
sentences that follow from a given set of sentences - i.e the inference rules.

When modeling cryptographic protocols the two logics, knowledge and belief,

have very different objectives. Logics of knowledge are concerned with what knowl-

edge a subversive party looking to infiltrate the protocol might gain during a protocol

run. Logics of belief try to capture how beliefs of participants change, and whether

or not they have trust in the system at the end of a protocol run.

13

The most popular of the belief logics is BAN logic, so named for its creators

Burrows, Abadi, and Needham [Ref. 33]. BAN logic is a modal logic that models how

an honest participant’s belief changes during the run of a protocol. Given an initial

set of assumptions, BAN logic provides a set of inference rules for extending the belief

of a participant. As messages are sent and received, inference rules are applied to

determine what new beliefs can be derived from the initial set. Security goals are

described by a set of beliefs that must be satisfied during and at the conclusion of a

protocol run. If the beliefs can be deduced using the inference rules, then the protocol

achieves the described security goal.

B. COMMUNICATING STATE MACHINES

Communicating state machines can be used to model the communication

events of participants in a communication protocol. Many concepts found in Com-

puter Science can be modeled using finite state machines. Programming languages,

intrusion detection systems, and databases can all be expressed as a sequence of state

machines. It is only natural, that communication protocols could be expressed in

a similar manner. Though several different definitions of state machines exist, the

following definition will be used for describing communication state machines.

Sipser defines a finite automaton[Ref. 39] as a 5-tuple (Q, Σ, δ, q0, F), where

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ : Q × Σ → Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

A sentence is made up of elements from the alphabet. As it is input into the finite

automaton, the transition function transforms the automaton to another element in

the set of states. Since the sentence is finite, the automaton will eventually finish

14

transitioning and arrive at a final state. If the final state is in the set of accept states,

the sentence is accepted. If it is not, the automaton rejects the sentence. A finite

state transducer is a type of finite automaton whose output is a string and not just

accept or reject.

To create a communicating state machine, two or more finite transducers are

used where the input alphabet of a transducer is the output string from another

transducer. Figure 3 illustrates two communicating state machines exchanging a

simple message. The state transitions of each machine are determined by output

received from the other machine.

Y E S

N O

If NO,
then YES.

If YES,
them NO.

A B

Figure 3. Communicating State Machines

To model a cryptographic protocol, each participant is represented by a com-

municating state machine. The transitions functions are defined by the protocol,

while the messages created by the transitions functions become the input alphabets

for other communicating state machines.

The advantage of this approach, cited by Meadows[Ref. 29], is that commu-

nicating state machines derive security results directly from the messages instead of

a belief developed as a result of receiving the message. Removing the additional in-

ference step reduces the complexity of specifying properties of a protocol, making it

easier to understand.

Most recent work based on communicating state machines have modeled the

world through a view introduced by Dolev and Yao. [Ref. 9]. The Dolev-Yao model

15

assumes that the communication network is under the control of an intruder who

can read all traffic, alter and destroy messages, create messages, and perform any

operation, such as encryption, that is available to legitimate users of the system.

So, every message in the protocol passes through the attacker’s communicating state

machine with the attacker’s own set of transition rules.

Protocols that are developed and shown to be correct under this interpretation

are assumed to be more resilient to attacks from dishonest users that those developed

under other formal methods. Millen’s Interrogator [Ref. 22], the NRL Protocol

Analyzer [Ref. 38], and the Longley-Rigby tool [Ref. 26] are all, in some respect,

based on the Dolev-Yao model. In 1998, another state machine model[Ref. 42] was

introduced that captured the Dolev-Yao model using a graphical structure.

C. STRAND SPACES

1. Strands

The Strand Space method is formal framework based on communicating state

machines that can be used to construct and analyze cryptographic protocols. The

method is described in several research papers by Fábrega, Herzog and Guttman.

[Ref. 42, 14, 13] Figure 4 illustrates the syntax and semantics of the method by

depicting the Needham-Schroeder-Lowe Public Key protocol, originally developed by

Needham and Schroeder[Ref. 34], fixed by Lowe[Ref. 27] and expressed in Strand

Spaces.[Ref. 42].

A B

+{|NaA|}KB

- −{|NaA|}KB

−{|NaNbB|}KA

�

� +{|NaNbB|}KA

�

+{|Nb|}KB

�

- −{|Nb|}KB

�

Figure 4. Needham-Schroeder-Lowe Public Key Protocol

16

The goal of the original Needham-Schroeder Public Key protocol is to establish

mutual authentication between two participants, A and B. In order for two partici-

pants to establish mutual authentication, both must prove their identity to the other.

The protocol achieves this by exchanging cryptographically transformed nonces. A

nonce is a freshly generated value, usually created by a random number generator.

By using the random number generator, the value of nonces is unpredictable. Nonces

are used to identify unique instances of messages.

The participants are bound by roles of initiator and responder, respectively.

Participant A initiates the protocol by sending a message to B. Acting as responder,

B will continue to respond to A until the protocol is complete. The sequence of trans-

mission and reception events for each participant are captured in a linear structure

called a strand. Each time a message is sent or received a node is connected to the

strand using a ⇓. The ⇓ defines the order in which communication events occur.

Each event is described by a tuple containing a symbol and a term. The

directional symbols, + and -, say whether a term has been sent or received, respec-

tively. Terms are the building block of messages. If T is the set of possible messages

that can be exchanged between participants, then terms are elements of T. Nonces,

names, keys and hashes are all types of terms. Terms can be concatenated together,

encrypted or decrypted using keys to form new terms. Terms will be referred to

as positive or negative depending on the directional symbol that precedes it. If no

directional symbol precedes a term, then the term is unsigned.

For example, in Figure 4 above, the nonce, Na, is concatenated with the name,

A, and then encrypted using the key, KB to form the term {|NaA|}KB
. In the Strand

Space method, the symbol {|x|} is used to denote encryption of term x. To form a

transmission event, the + symbol is attached to the left of the term. The name, A,

and the nonce, Na are subterms of {|NaA|}KB
. A subterm relation is used to describe

this relationship, where t1 @ t means that t1 is a subterm of t.

Subterm Relation The subterm relation @ is defined inductively, as the smallest

17

relation such that:

1. a @ a

2. a @ {|g|}K if a @ g;

3. a @ gh if a @ g or a @ h

A term t0 is a component of t if t0 @ t , t0 is not a concatenated term, and

every t1 6= t0 such that t0 @ t1 @ t is a concatenated term. So, components are

either atomic values or encryptions. For example, NaA has two components while

the term {|NaA|}KB
is a single component.

Given these definitions, a Strand Space is a set Σ with a trace mapping tr :

Σ → (±T)∗, where (±T)∗ represents the possible sequences of tuples described above.

For the example above, the traces for A and B would be described as in Figure 5.

An honest participant is one that follows all the rules for their particular role, as

tr (A) = 〈+{|NaA|}KB
,−{|NaNb|}KA

, +{|Nb|}KB
〉

and

tr(B) = 〈−{|NaA|}KB
, +{|NaNb|}KA

,−{|Nb|}KB
〉

where,

1. Na, Nb are terms representing freshly generated nonces.

2. KA, KB are the public keys of principals A and B

3. {|M |}KB
expresses the encryption of term M using the public key of KB. And

similarly for KA.

Figure 5. Initiator and Responder Traces

defined by the protocol. Since A and B are assumed to be honest participants

of the protocol, their strands are called regular strands. The actions of dishonest

participants are represented by penetrator strands. A Strand Space that includes a

penetrator strand is considered to be infiltrated. Together, both types of strands can

be used to construct bundles.

18

2. Bundles

West[Ref. 43] defines a directed graph as triple consisting of a vertex set, edge

set, and a function that assigns a pair of vertices to each edge. The first vertex is

the tail of the edge, and the second vertex is the head. For example, let a graph G

be 〈V, E, R〉 where V = {w, x, y, z}, E = {a, b, c, d} and the function is defined by

the table in Figure 6. Using the table a directed graph can be drawn, as in Figure

Edges Tail Head
a w x
b y z
c w y
d x z

Figure 6. Graph Function

7, where an → is used to describe an edge going from one vertex to another. If a

w
a

- x

y

c

? b
- z

d

?

Figure 7. Graph Example

graph is formed using a subset of the vertex set and a subset of the edge set, then

the graph is called a subgraph of the original graph. If the vertex set and edge set of

the subgraph are finite, then the graph is called a finite subgraph.

Combining graphs and the Strand Space definitions, a protocol can be de-

scribed as a bundle. A bundle is a finite directed graph that describes the causal

relationships among participants of a protocol run.

19

Fix a Strand Space Σ. Let the vertex set, N, be the set of possible communica-

tion events in Σ. Vertices will be referred to as nodes under the Strand Space method.

The edge set will be the union of two different edge types. The first set of edges, ⇒

will be the edges used to connect nodes that immediately precede one another on the

same strand. The other set of edges, →, will be used to connect nodes on different

strands. A subset of either edge set is denoted ⇒X and →X , for edges belonging to

the subset X. A bundle, therefore, is a finite acyclic directed graph whose vertex set

is a finite subset of N, and whose edge set is formed by taking the union of two finite

subsets of the two edge types. A formal definition follows.

Bundle:[Ref. 42] Suppose NC ⊂ N , →C⊂→ and ⇒C⊂⇒; and suppose C =

〈NC , (→C

⋃

⇒C)〉. C is a bundle if:

1. C is finite

2. If n2 ∈ NC and term(n2) is negative, then there is a unique n1 such that
n1 →C n2.

3. If n2 ∈ NC and n1 ⇒ n2 then n1 ⇒C n2.

4. C is acyclic.

Figure 4 illustrates a particular bundle for the Needham-Schroeder-Lowe protocol. A

path, p through C is any finite sequence of nodes and edges. The notation ⇒+ can

be used to denote the existence of a path between nodes on the same strand. The

definition of a bundle describes a collection of communicating state machines with

the following three properties:

1. A strand may send or receive a message, but not both at the same time

2. When a strand receives a message m, there is a unique node transmitting m
from which the message was immediately received

3. When a strand transmits a message m, many strands may immediately receive
m.

20

Since no attack has been discovered for the Needham-Schroeder-Lowe protocol, no

penetrator strand is displayed. If an attack did exist, a penetrator strand could be

described using the Dolev-Yao model of an intruder.

3. The Penetrator

To model actions of the Dolev-Yao intruder, the Strand Space method provides

a framework for generating possible penetrator strands.[Ref. 42] Each capability of

the intruder is characterized by a trace. The possible penetrator traces appear in

Figure 8. Penetrator strands are formed by combining penetrator traces in such a

M. Text message : 〈+t〉where t ∈T

F. Flushing: 〈−g〉
T. Tee: 〈−g, +g, +g〉
C. Concatenation: 〈−g,−h, +gh〉
S. Separation into components: 〈−gh, +g, +h〉
K. Key : 〈+K 〉where K ∈Kp

E. Encryption: 〈−K,−h, +{h}K〉
D. Decryption: 〈−K−1,−{h}K , +h〉

where T represents all possible text messages, and Kp are the keys known by the
penetrator.

Figure 8. Penetrator Traces

way that an attack can be generated.

Permutations, such as applying the penetrator traces multiple times, can lead

to an unbounded penetrator Strand Space. An unbounded attack space makes ver-

ifying a cryptographic protocol impossible. Therefore, one needs to find a way of

placing restrictions on the possible penetrator strands, so that all possible attacks

can be represented and in addition the process is decidable.If this process can be

accomplished, one can tractably prove the correctness of a protocol.

Bounding the possible penetrator strands is accomplished by restricting the

order a penetrator can apply certain operations.[Ref. 14] The Strand Space method

introduces a Normal Form lemma and an efficiency condition to limit the Penetrator’s

21

Strand Space. The normal form lemma states that for any bundle there exists an

equivalent bundle in normal form. A bundle is normal if, for any penetrator path

in the bundle, every destructive edge precedes all constructive edges. Constructive

edges are part of an E or C strand, while destructive edges are part of a D or S

strand, see above Figure 8.

The authors of the Strand Space method prove that every penetrator strand

can be represented in this normal form. Therefore, any properties that are proved

under the normal bundle, also hold under the original bundle. The efficiency condition

eliminates negative penetrator nodes where all or part of the terms have already been

received by the penetrator. The Normal Form lemma and the efficiency condition lead

to a bounded attack space. Guttman’s conclusion is that the penetrator restrictions

help identify certain components that the penetrator is unable to affect beyond denial

of service.[Ref. 14] This result allows regular participants to reach certain conclusions

about the origination of an encrypted component.

4. Cryptographic Assumptions

In order for Strand Spaces to accommodate a large set of cryptographic pro-

tocols, certain cryptographic assumptions are needed. [Ref. 13] The cryptographic

assumptions state the cryptographic properties required of a cryptosystem under the

Strand Space framework. For a public key cryptosystem the following assumptions

have been made.

1. Public keys for any participant can be determined reliably, e.g. via a public
key infrastructure or are distributed manually.

2. All private keys are safe, where safety insures that only the participants whose
name is bound to the private key can read and use it.

3. Only the possessor of the private key, K, can tractably recover terms encrypted
with K−1.

4. Only the possessor of the private key, K, can tractably construct signed mes-
sages using uniquely originating terms.

22

A cryptographic assumption for hash functions is also required. Given a hash function

h(t), it assumed that no principal can tractably find a pair of values t1 , t2 such that

h(t1) = h(t2), or given v, can tractably find t such that h(t) = v . Any cryptographic

algorithm or hash function proven to abide by these assumptions is a possible candi-

date for use in a cryptographic protocol designed using the Strand Space method.

D. SUMMARY

Formal methods continue to provide valuable support for specifying and ver-

ifying cryptographic protocols. Logics of knowledge and belief and communicating

state machines are the two formal approaches most often applied to the analysis

of cryptographic protocols. The Strand Space method has a emerged as an easy-to-

apply method based on the Dolev-Yao model. Strands, which describe communication

events, form bundles, which describe protocols. The Strand Space method provides

an abstraction for describing intruders and cryptographic primitives. By specifying a

protocol using a formal method, like Strand Spaces, the specification of the protocol

is clearer.

Next, the Strand Space method will be used to model the requirements of the

secure open distribution protocol.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

IV. REQUIREMENTS MODELING

Securing information is a human problem. Personal relationships are central

to the policies that define how information will be handled. These relationships

lead to the development of security policies. Before a cryptographic protocol can be

designed, a requirements specification must be created that describes the assumptions

the protocol makes about its environment and the security policies it should support.

Modeling requirements involves transforming the informal requirements to a

formal language and providing evidence that the formal model captures the intent

of the information requirements. In [Ref. 31] Catherine Meadows states that “Many

problems with security protocols arise, not because the protocol as designed did not

satisfy its requirements, but because the requirements were not well understood in the

first place.” In her survey on requirements modeling, she identified three properties

a formal framework for expressing protocol requirements should satisfy.[Ref. 31]

1. It should be expressive enough to specify properties of interest.

2. It should be unambiguous, and preferably compatible with some system for
formal analysis.

3. Most importantly, it should be easy to read and write.

A. FORMAL REQUIREMENTS MODELING

Security is a moving target. Even when modeling requirements for crypto-

graphic protocols, security properties, such as authentication, are defined differently

in different environments. The “What you know”, “What you are”, and “What you

have” factors of authentication[Ref. 6] are applied in a variety of ways to authenticate

“Who you are” in order to determine “What access you are allowed.” Being able to

express requirements, in whichever way the environment defines the security is an

important capability for developing a requirements modeling language.

25

Traditionally, requirements modeling languages have been bound to the lan-

guage of a particular formal analysis tool. Once the requirements had been defined

in the language of the tool, verifiers could analyze the protocol using a general pur-

pose tool, like a model checker or theorem prover. Specifying requirements this way

relieved analysts from having to construct protocol-specific tools. For an analyst fa-

miliar with the particular tool, understanding the formal specification was trivial.

But for the engineer, tasked with verifying that the formal model mapped to the

original requirements, the formal specification language was cryptic and difficult to

understand. The advantages of having an unambiguous formal language that was

compatible with a formal analysis system, led to requirements models that couldn’t

be understood by those outside the analyst’s domain. This led researchers to develop

more user friendly modeling techniques that could still be analyzed using a formal

framework.

B. STRAND SPACE REQUIREMENTS MODEL

A goal of the Strand Space method was to develop a formal analysis tool that

could be used to specify and analyze protocols in a easily understandable manner.

The graphical illustrations model an environment that more closely resembles the

traditional computing environment. Those that aren’t versed in the formal logic can

still understand the message passing of even the most complex protocols, once they

have been described in a Strand Space picture.

The difficult part of modeling requirements is describing the security proper-

ties of a particular requirement using only strands and the messages that connect

them. Guttman has noted[Ref. 10] that agreement properties could be formalized by

the relative placement of strands. Some success has been achieved using agreement

properties to formally describe more sophisticated security properties.

26

1. Agreement Properties

Lowe believes that an authentication protocol is designed to ensure that one

participant can assure the identity of the other participant engaged in the proto-

col.[Ref. 28] Other cases exist where authentication is achieved as long as a par-

ticipant can determine that another is running the protocol, not necessarily with

A. Lowe, therefore, describes four layers of agreement that can be used to identify

authentication properties of a protocol.

Given a participant, A, the level of agreement is derived by what A can infer

about another participant, B, upon completion of a protocol run. Listed in order of

strength, the levels of agreement are,

1. Aliveness - B had been running the protocol.

2. Weak agreement - B had been running the protocol with A.

3. Non-injective agreement - Given a set of data values ds, B had been running
the protocol with A, B was acting as responder, and the two participants
agreed on the data values, ds.

4. Agreement - All previous definitions hold, and each such run of A corresponds
to a unique run of B

A formal method capable of modeling Lowe’s agreement properties will be able to

capture authentication requirements of varying strengths.

2. Modeling Agreement Properties

The Strand Space method uses the relative placement of strands to model

Lowe’s agreement properties. For example, aliveness would be modeled by saying

that for all strands of participant A, there exists a B strand. Since A only knows that

B is running the protocol, not necessarily with A, the strands are not connected, but

they are in the same bundle. Also, the B strand can take the form of any possible

regular strand. The inability to provide definite structure to the bundle is, in effect,

the weakness of the aliveness property.

27

The bundle, modeling agreement, would illustrate a much more definite struc-

ture. The two strands for A and B would be completely connected, and all data values

would be instantiated with the same values for matching communication events. Fig-

ure 9 provide Strand Space illustrations for all of Lowe’s agreement properties for a

simple protocol. For protocols whose authentication requirements can be modeled as

agreement properties, these structures can be applied.

C. SODP REQUIREMENTS

1. Common Criteria Requirements

The requirements for the secure open distribution protocol are describe by

“Part 3: Security assurance requirements”[Ref. 21] of the Common Criteria for Infor-

mation Technology Security Evaluation[Ref. 20] The assurance requirements define

what precautions must be taken during the life-cycle of the product to achieve a cer-

tain assurance level. The Trusted Computing Exemplar project will adhere to the

assurance requirements for a product achieving Evaluated Assurance Level (EAL) 7,

the highest classification under the Common Criteria.

As a distribution mechanism for the TCX, the secure open distribution pro-

tocol must meet all delivery requirements stated in the Common Criteria. Within

the Common Criteria, requirements are separated, first, into classes, and then into

families. Different levels of requirements are described within each family. For ex-

ample, the class “ADO: Delivery and operation”[Ref. 19] includes a specific family

for delivery “DEL: Delivery”. The Delivery family has three different assurance lev-

els for delivery: Delivery procedures, Detection of modification, and Prevention of

modification. For an EAL7 product, all requirements listed under “Prevention of

modification”[Ref. 18] must be satisfied. Those requirements are,

1. The delivery mechanism shall provide technical measures for the prevention
of modifications, or any discrepancy between the developer’s master copy and
the version received at the user site.

28

∀ ∃

A B B

+X1
- - −X2 ... � +X2

∪

−Y1

�

w

w

w

w

w

w

w

w

w

w

w

� � +Y2

�

w

w

w

w

w

w

w

w

w

w

w

... - −Y2

�

w

w

w

w

w

w

w

w

w

w

w

Aliveness

∀ ∃ ∀ ∃

A B A B

+X1
- −X2 +X - −X

−Y1

�

w

w

w

w

w

w

w

w

w

w

w

� +Y2

�

w

w

w

w

w

w

w

w

w

w

w

−Y

�

w

w

w

w

w

w

w

w

w

w

w

w

� +Y

�

w

w

w

w

w

w

w

w

w

w

w

w

WeakAgreement Non − injectiveAgreement

∀ ∃!

A B

+X � −X

−Y

�

w

w

w

w

w

w

w

w

w

w

w

w

- +Y

�

w

w

w

w

w

w

w

w

w

w

w

w

Agreement

Figure 9. Lowe’s Agreement Properties modeled using Strand Spaces

29

2. The delivery mechanism shall provide procedures that allow detection of at-
tempts to masquerade as the developer, even in cases in which the developer
has sent nothing to the user’s site.

In order to prove that the secure open distribution protocol is correct, the require-

ments must be specified in a language that can be analyzed using the Strand Space

method.

2. Modeling Common Criteria Requirements with Strand

Spaces

The delivery requirements defined by the Common Criteria use a language

similar to the language of Lowe’s non-injective agreement properties. The first re-

quirement states that no discrepancy may exist “between the developer’s master copy

and the version received at the user site.” In other words, the two participants, the

developer and user, must agree on the master copy.

The second requirement is a composition of two agreement properties. First,

the user must detect “attempts to masquerade as the developer.” Second, that de-

tection of the event must be possible “even in cases in which the developer has sent

nothing.” Stated as an agreement property: Upon completion of a protocol run the

user must agree that the developer had been running the protocol with the user.

Combining the two requirements yields all three conditions for non-injective agree-

ment. Since the user is only concerned that the contents of the message match the

developer’s master copy, replay is not an issue. So, full agreement isn’t required.

Therefore, the requirements for the secure open distribution protocol can be modeled

using the Strand Space method representation for non-injective agreement.

Modeling the requirements of the secure open distribution protocol using

Strand Spaces requires instantiating the variables of the particular agreement def-

inition. In the definition for non-injective agreement, the participants were the ini-

tiator, A, and the responder, B. For the SODP protocol, these participants will be

instantiated with the user, U, and the developer, D. The data value the user and

30

developer must agree on is the master copy of the document, M. Therefore, modeling

the requirements of the SODP as a non-injective agreement property leads to the

Strand Space diagram in figure 10. The diagram illustrates that for all user strands,

∀ ∃

U D

−M � � +M

Figure 10. The SODP Requirements Model

where a document has been received, there must exist a matching developer strand

where the master copy has been transmitted. This description follows directly from

the definition of non-injective agreement.

D. SUMMARY

Requirements are created to enforce security policies. Formal requirements

attempt to describe the elements of those policies and capture environmental as-

sumptions. Specifying requirements in a user friendly format that describes the re-

quirements accurately has been a struggle for formal methods. Strand Spaces appears

to be an excellent candidate due to its graphical illustrations and flexibility. Lowe’s

agreement properties help define the characteristics of protocols that lead to authen-

tication results. The relative placement of strands can be used to model Lowe’s

agreement properties. The Common Criteria defines the authentication requirements

for the SODP. Non-injective agreement can be used to describe the authentication

properties of the SODP. This result leads to a requirements model for the SODP

using Strand Spaces. In the next chapter, this requirements model will be used to

guide the design of the SODP.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

V. PROTOCOL DESIGN

Designing a correct protocol is an experimental exercise. A requirements model

describes the properties a correct protocol will have, but not how to design a protocol

that has those properties. Therefore, the protocol architect often must experiment

with design choices to produce a correct protocol.

When performed in an ad hoc manner, design choices can lead to an incorrect

protocol. But, if a designer can apply a design strategy demonstrated to produce

correct protocols, errors are eliminated and and correctness can be reached sooner.

Several different design approaches have been suggested over the past decade.

A. DESIGN PRINCIPLES

In 1996, Martin Abadi and Roger Needham proposed a design strategy to

respond to basic mistakes that had been appearing in cryptographic protocols pro-

tocols.[Ref. 2] Many of the design flaws the authors had uncovered were the result

of assumptions that had not been explicitly stated. Their solution was to provide a

collection of design principles that described rules-of-thumb for engineering crypto-

graphic protocols. Abadi and Needham believed applying the principles would result

in secure protocols that could be analyzed without formal methods. The authors

believed that informal design principles, not formal methods, would be a large part of

the solution. Anderson and Needham would later extend the approach by introducing

robustness principles for public key protocols.[Ref. 3].

Soon after both papers had been published, Paul Syverson, of the Naval Re-

search Laboratory, explored the limitations of the design principle approach.[Ref. 41]

In his report, Syverson found several examples where assumptions were made that

had not been made explicit. For example, Syverson found the first principle of the

Anderson-Needham approach to be based on an invalid assumption about the pur-

pose behind using digital signatures. The authors of the design principles had claimed

33

that digital signatures are used to hold principles accountable to a trusted third-party.

Several examples exist in literature where encrypting a signed message could provide

security services other than non-repudiation.

Though limited in application, Syverson still thought the approach could be

useful as an after-the-fact idiot check. He recommended that the user apply careful

reasoning when using the principles to make design decisions. Though Needham and

Abadi’s guiding principles may not have provided the best solution, Swiss researches

were able to combine his work in BAN logic and the Spi Calculus[Ref. 1] to develop

a more formal design strategy.

B. LOGICAL DESIGN

In 1998, Levente Buttyán, Sebastian Staaman and Uwe Willhelm of the Swiss

Federal Institute of Technology introduced a simple design strategy for authentication

protocols.[Ref. 25] Using pieces of GNY logic, their flavor of BAN logic proposes

synthetic rules that can be used to generate a formal protocol description, given

security goals described in the language proposed by the others. After investigating

the security goals specified in the requirements, an developer can choose the synthetic

rules that best satisfies them.

Though the protocol designer is still left with a decision, the number of possi-

bilities are greatly reduced. Once all goals have been satisfied, the construction of the

protocol is straight forward. Though development of their strategy ended soon after

the paper’s publishing, their use of channels to represent encryption and decryption

abstractly that was most intriguing.

The notion of channels can be found throughout protocol literature in many

different forms. Lampson defined channels[Ref. 24], practically, as principals who can

speak directly with a computer. Rueppel identifies the elementary security channels

by the type of cryptographic protection that has been applied: physical, symmetric,

and asymmetric. The authors of the previous design strategy characterize channels by

34

who can send and receive messages via the channel.[Ref. 25] Viewed in this manner,

channels can describe cryptographic protocols using an information flow model. The

difference from traditional information flow models, is that the participants enforce

access control through encryption, rather than with an overarching security policy.

Public key cryptography can be used to determine members of the read and

write sets that define the control of access to channels. When no encryption is used a

public channel is formed where every principal is a member of the read and write set.

On the other hand, if encryption is applied to data values both sets can be reduced.

For instance, if a public key is used to encrypt, and the private key is assume to

be safe, then only a single participant, the owner of the private key, is a member of the

read set. If a private key is used to encrypt, as is the case with a digital signature,the

owner of the private key is the only member of the write set. A singular write set

implies source authentication for all messages received on the channel. A singular

read set implies secrecy for all messages sent on the channel. By authenticating

the possible senders and receivers, channels can be constructed to provide security

services.

C. DESIGN USING STRAND SPACES

1. Authentication Tests

The Strand Space method also provides a method for authenticating the source

of messages called the authentication tests. In the previous discussion on channels,

the encryption placed restrictions on who was capable of reading and writing cer-

tain messages. In the Strand Space method a channel is called a cryptographic con-

text In the authentication tests, the same cryptographic properties used to construct

channels can help determine which participant can move message between different

cryptographic contexts. “Suppose a principal in a cryptographic protocol creates and

transmits a message containing a new value v, later receiving v back in a different

cryptographic context. It can be concluded that some principal possessing the rele-

35

vant key K has received and transformed the message in which v was emitted. If K ∈

S is safe, this principal cannot be the penetrator, but instead must be a regular princi-

pal.”[Ref. 13] The regular edges where the cryptographic transform occurs is called a

transforming edge. The component that changes contexts is called an authentication

test component.

Authentication Test Component t = {|h|}K is a test component for a term,

a, in a node, n, if:

1. a @ t and t is a component of n;

2. The term t is not a proper subterm of a component of any regular node n ′ ∈ Σ.

Authentication Test components produce two different tests: incoming and

outgoing.

Outgoing test Suppose a uniquely originating value is transmitted in en-

crypted form where the decryption key is safe. If it is later received, outside the

original cryptographic context, then a regular participant, not the penetrator, must

have been responsible for transforming the value out of the original context. A Strand

Space illustration of the outgoing test for a public key cryptosystem appears in Figure

11.

Incoming Test If instead, a value is received in encrypted form, where orig-

inally it was not sent in that cryptographic context, and the encryption key is safe,

then a regular participant, must have been responsible the for placing the value in

this context. A Strand Space illustration of the incoming test for a public key cryp-

tosystem appears in Figure 12.

2. Using Authentication Tests to Model Agreement

The Authentication Tests provide a sufficient structure for achieving an au-

thentication security goal under Lowe’s non-injective agreement. In order for partic-

ipant A to achieve non-injective agreement, given the structures above, the following

three conclusions must be reached.

36

A B

∀ ∃
+{M}KB

- - +{M}KB

−M

�

� � −M

�

where M is a uniquely originating message, and KB is the public key of a regular
participant whose private key is safe and {M}KB

is a test component for term M.

Figure 11. Outgoing Authentication Test

A B

∀ ∃
+M - - +M

−{M}
K

−1

B

�

w

� � −{M}
K

−1

B

�

w

where M is not necessarily uniquely originating, but is known to exist publicly. And
K−1

B is the safe private key of a regular participant with {M}
K

−1

B

a test component

for M.

Figure 12. Incoming Authentication Test

1. B has been running the protocol with A

2. B was acting as responder

3. A and B agree on the message M

Therefore. when operating under the cryptographic assumptions, i.e. the safety of the

keys, one can deduce information about the identity of a principal from the existence

of transforming edges. No one, except B, is capable of the transformations illustrated

in Figures 11 and 12. Therefore, when A establishes the existence of the the matching

strand, the identity of the participant is trivially determined. And, A can conclude

that B has been running the protocol.

In the Authentication Tests, participant A is implied as the initiator, which

forces B to act as responder. Finally, once is has been established that a transforming

edge exists on B’s strand, A and B agree on the contents of the message.

37

D. DESIGNING THE SODP USING STRAND SPACES

The goal for designing the SODP is to construct a cryptographic protocol

that achieves the structure proposed in the requirements model. Every protocol must

begin with an initiator. The role of the initiator is to pass the first message, thereby

initiating an instance of the protocol. For the TCX, since the user requires assurance,

the user assumes the role of initiator. As the initiator, the user will send the name

of the document, and expect to receive the requested document from the responder.

Since the user must have, at some previous time, received the list of document names

from the developer, a reception of the document list will also be included in the

initiators strand. The corresponding initiator appears in Figure 13.

In order to achieve the security goals, the user needs a way to prove the

existence of the responder’s strand that sends the message M.

U

−N � ...

+N

�

w

w

w

w

w

w

w

w

w

w

w

w

- ...

−M

�

w

w

w

w

w

w

w

w

w

w

w

w

� ...

where, N ∈ Document Names and M ∈ Messages

Figure 13. Initiator strand without Encryption

The Authentication Tests can be used to produce the necessary responder

strand. In the SODP, the initiator is attempting to authenticate the original source

of the message. In either Authentication Test, the initiator achieves authentication

38

by inspecting a subsequently received message. Since the user needs to ultimately

receive a message from the developer, an incoming Authentication Test could be used

to achieve the authentication goal required for the SODP.

In the current version of the initiator strand, the document name, N, and the

document message, M, are received unencrypted. If the private key of the developer

were used to sign the name of the document and the message, N would be considered

an incoming Authentication Test component. This would allow the name of the

document, N, to bind the request to the document, M. The resulting initiator strand

would look like Figure 14. Assuming the test was successful, a responder strand could

be constructed, resulting in the final design of Figure 15. To prove that the incoming

Authentication Test achieves the security requirements for the secure distribution

protocol, i.e. the design is correct, formal verification is required.

U

−N � ...

+N

�

w

w

w

w

w

w

w

w

w

w

w

w

- ...

−{N, M}
K

−1

D

�

w

w

w

w

w

w

w

w

w

w

w

� ...

Figure 14. Initiator strand with Encryption

39

U D

−N � +N

+N

�

w

w

w

w

w

w

w

w

w

w

w

w

- −N

�

w

w

w

w

w

w

w

w

w

w

w

w

−{N, M}
K

−1

D

�

w

w

w

w

w

w

w

w

w

w

w

� +{N, M}
K

−1

D

�

w

w

w

w

w

w

w

w

w

w

w

Figure 15. Secure Distribution protocol

40

E. SUMMARY

Designing a correct protocol involves experimenting with different design deci-

sions. A design strategy can help with choosing a particular design. Design principles

can be used as an informal design strategy, but more formal strategies produce more

explicit results. Channels describe cryptographic protocols as an information flow

model, restricted by who can read and write on a particular channel. The Authen-

tication Tests, found in Strand Spaces, also place restrictions on information. The

Authentication Tests allow a participant to make certain assumptions about who cre-

ated certain components of a message. The Authentication Tests were used to produce

a possible design for the SODP. In the next chapter, that design will formally verified

using the Strand Space method.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

VI. FORMAL VERIFICATION

The goal of protocol verification is to provide the sufficient evidence that a pro-

tocol has satisfied a set of requirements. Sufficient evidence is difficult to determine.

Each formal verification tool attempts to not only provide the necessary evidence,

but also argue as to why their evidence sufficiently proves correctness.

For a protocol to be correct it must satisfy all conditions set forth by the

requirements model. The most common form of evidence is a mathematical proof;

with the requirement stated as a theorem and an explanation as to why a particular

design proves the theorem. The other approach is to describe the system in its

entirety. Once a person can see the entire system, careful inspection may determine

that all requirements have been satisfied.

A. MODEL CHECKING

Model checkers verify protocols by exhaustively searching the state space of

the communicating state machines for insecure states. A state is defined by a set of

variables used describe the system. Transition rules govern how the variables change,

which allows the system to move between states. Security goals are defined as a state,

or set of states, the system should never reach.

For example, a secrecy goal could be described by as variable, that can be read

by a attacker, which is instantiated with a value that is suppose to remain secret.

Once the insecure state has been described, model checking can be used in either of

two directions. In the forward direction, all the possible states are instantiated until

either an insecure state is found or the space is exhausted. The other method is to

work backward from insecure states to initial insecure conditions. In the first case

one proves security by showing that no set of initial conditions can lead to an insecure

state. In the second case one proves that any set of initial conditions that lead to an

insecure state are impossible. Since the number of states can increase very rapidly

43

given only a few variables, model checkers, like the NRL Protocol Analyzer have been

developed to automate the process and handle larger state spaces.

The NRL Protocol Analyzer is a prototype special-purpose verification tool.[Ref.

29] More generally, the Analyzer is a model checker. Based on the Dolev-Yao model,

the Analyzer model checks in a backward direction using term-rewriting. As before,

insecure states are described using variables. A combination of transition rules and

reduction rules are used to give a complete description of all states that may precede

the specified state. This process continues until either an attack is found, or until all

selected states have been examined.

Since the search space is infinite the NRL Protocol Analyzer employs several

mechanisms to bound the search. For example, the user can make partial queries

that only search a portion of the state pace. The user may also specify a database

of requirements on reachable states that can determine which states are reachable

given certain conditions. This approach has not only led to new attacks, but proven

correctness for many cryptographic protocols.

B. THEOREM PROVING

Theorem proving verifies cryptographic protocols by proving that a security

result is true given certain conditions. Given a particular reasoning strategy, satisfying

the conditions, or antecedents, allow the prover to reach a conclusion, or consequent.

In BAN logic, the antecedents are a set of beliefs, and the theorems are the inference

rules that allow one to generate new beliefs. In protocol verification, the requirements

model is the consequent the theorem prover wishes to achieve. The antecedents, on

the other hand, are more difficult to determine.

Each formal method has its own strategy for specifying antecedents and pro-

viding the evidence that proves the consequent. In the early days of protocol verifi-

cation, proofs were hand written and protocol specific. Not only did the process take

a considerable amount of time, but user dependence introduced error or uncertainties

44

that required further verification. The current approach is to offload much of the the-

orem proving to computers. This has led to the development of automated theorem

provers, like PVS[Ref. 37] and Isabelle.[Ref. 16]

Automated theorem provers have provided mechanical aid to the verification of

protocols. When a proof fails, the fault is usually because the details about bookkeep-

ing are often assumed or ignored. Automated Theorem Provers address this failure

by requiring the user to state the details of the protocol explicitly. This has been

accomplished through the use of logic-based specification languages. The specifica-

tion language forces the writer to state all necessary information in a precise formal

statement.

Automated theorem provers also reduce the time to construct proofs. One

method is to keep a library of previously proved theorems. Using query tools, the

user can locate and apply these theorems without having to restate them. Once a

theorem has been applied, all antecedents required for the theorem are automatically

stated for the user. This prevents the user from reaching invalid conclusions, thereby

reducing human error. If the user finds themselves performing a similar series of proof

steps on occasion, the specification language can be used to develop a proof strategy

for handling such cases. Much work has also been to improve the user friendliness

of the proof output. For example, proof trees can be used to illustrate the logical

structure of the proof.

C. PROTOCOL VERIFICATION USING STRAND SPACES

Theorem proving is the current approach for verifying protocols using Strand

Spaces. Security goals are stated in the form of theorems from the perspective of a

regular participant, such as “Agreement: The Responder’s Guarantee” or “Secrecy:

The Initiator’s Nonce.”[Ref. 42] The security requirements become the consequent

of the theorem. Proving the consequent involves providing the required evidence

that certain nodes do not exist on the penetrator’s strand, and, therefore, are the

45

work of a regular participant. For example, proving a correspondence goal for the

initiator involves constructing the matching responder’s strand from the initiator’s,

and proving that the penetrator is unable to construct a similar strand.

D. VERIFYING THE SODP PROTOCOL

The Strand Space method will be used to verify the design of the secure open

distribution protocol. While the secure distribution protocol shown in Figure 15

defines strands with a height of three, the first level only provides information to

the user, but is not required to prove that the protocol is secure. As a matter of

convenience, only the second and third levels of the protocol are considered below.

Specifying the design given in chapter V leads to the following SODP Strand Space.

SODP Strand Spaces Let Σ be an infiltrated Strand Space. Let P be a

penetrator in Σ. Σ is an SODP space if it is the union of three kinds of strands:

1. Penetrator strands s ∈ P ;

2. “Initiator strands” with trace Init[N,M],defined to be:
< +N,−{|N, M |}

K
−1

D

>

where N ∈ possible document names and M ∈ possible documents.

3. Complementary “responder strands” with trace Resp[N,M] , defined to be:
< −N, +{|N, M |}

K
−1

D

>

where N ∈ possible document names and M ∈ possible documents.

As was described above, one must show that this Strand Space satisfies the

non-injective agreement property. Per the requirements for the SODP, verifying non-

injective agreement involves proving that the responder strand specified in the pro-

tocol design exists and is regular.

Non-injective agreement: The Initiator’s Guarantee

Suppose:

1. Σ is an SODP space and C is a bundle containing an initiator strand with
trace Init[N,M];

2. K−1

D is safe

46

Then one must show that C contains an responder’s strand with the trace Resp[N,M].

The proof will be performed by applying the results of the incoming Authen-

tication Tests.

Proof: By definition of a test component, the edge < si, 1 >⇒< si, 2 > is an

incoming test for a term N where < si, k > refers to the kth node on the strand, si.

By the definition of an incoming Authentication Test, there exists regular

nodes m1 ,m2 ∈ C such that N is a component of m1 . So, m1 ⇒+ m2 is a transforming

edge for N. Since {N, M}
K

−1

D

is an incoming test component for the term N there

must exist a negative regular node containing a component of the form -N. The only

component of this form is < sr, 1 > for sr ∈ Resp[N,M]. Thus, the transforming edge

for m1 ⇒+ m2 must be < sr, 1 >⇒+< sr, 2 >. Under the cryptographic assumption

of safe keys, the developer is the only participant capable of producing sr. Therefore,

the developer was acting as responder in this run of the protocol.

E. SUMMARY

Protocol verification attempts to assure that a protocol design has satisfies a

requirements model. The most common approaches for formal cryptographic protocol

verification are model checking and theorem proving. Model checking describes the

system as a state machine and checks that the model is correct. Theorem proving

produces a proof that the design is correct. Automation has been applied to both

methods, in order to increase efficiency and reduce error. The Strand Space method

uses theorem proving to assure correctness of a cryptographic protocol. Using the

Strand Space method, the SODP has been verified to achieve the requirements iden-

tified by the requirements model in chapter IV.

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

VII. CONCLUSION

In this paper, a process has been proposed for developing cryptographic pro-

tocols. The process is composed of the following steps:

1. State informal requirements in terms of agreement properties (Chapter IV)

2. Model formal agreement properties using Strand Space structures (Chapter
IV)

3. Apply the Authentication Tests to design a protocol that satisfies the Strand
Space requirements model (Chapter V)

4. Prove the correctness of the design by demonstrating how the protocol satisfies
the requirements model (Chapter VI)

The process begins with an informal statement about the requirements of the secure

open distribution protocol. As the delivery mechanism for the Trusted Computing

Exemplar project, the informal requirements are taken from the Common Criteria

for Information Technology Security Evaluation. The requirements are to prevent

the modification of the developer’s master copy of a document that is distributed to

the user.

The informal requirements are formally defined using Lowe’s authentication

definition. Since the user needs to authenticate the source of the document, the de-

veloper, and the integrity of the message, non-injective agreement is chosen to model

authentication. A protocol that can meet the conditions of non-injective agreement

will assure the user that he is running the protocol with the developer, and that the

document received matches the developer’s master copy.

Non-injective agreement is modeled using the Strand Space method. The

Strand Space method is one form of the communicating state machine approach that

models protocols graphically. In the Strand Space method, protocols are modeled as

a bundle of strands. Strands connect to form bundles, which describe the communica-

tion events for every possible participant in a run of a protocol: honest and dishonest.

49

The causal relationships among strands appearing in the same bundle are illustrated

as a finite directed graph. The graphical structure leads to some interesting proof

methods and protocol specifications.

To model the non-injective agreement requirement for the SODP, a Strand

Space illustration is used. Two strands are used to represent the participants. The

relative placement of the strands states that for all user strands that receive a doc-

ument, there is a developer strand that sent the message. Once the requirements

for the SODP have been transformed from the informal definitions of the Common

Criteria into a formal Strand Space definition, a design can be constructed.

The SODP is designed using the Authentication Tests; a Strand Space method

for reasoning about cryptographic transformations. The Authentication Tests intro-

duce three types of cryptographic transforms that, when appearing in cryptographic

protocol, allow a participant to reach certain authentication conclusions. The test

component for the incoming Authentication Test component is selected to provide

information to the user about the integrity of the document and the identity of its

source.

Proving that the specification of the SODP meets the requirements model,

requires a formal proof. The SODP is verified using the axioms and definitions of

the Strand Space Authentication Tests to develop a proof. The proof states that

an initiator, the user in the case, can prove the existence of the responder’s, or

developer’s, strand as defined by protocol specification for the SODP. Proving this

result required the results derived from properties of the incoming Authentication Test

and the structure of bundles. Proving the theorem proves that the design satisfies

non-injective agreement as defined by the requirements model; resulting in a correct

protocol.

The result of the development process proposed in this paper is a cryptographic

protocol that can be used to securely distribute open source information. The Strand

Space method has been illustrated as a viable option for the formal development of

50

a cryptographic protocol. The requirements of the SODP were formally modeled as

agreement properties. The specification was aided by the Authentication Tests. And,

the correctness of the SODP was was assured through the construction of a formal

proof.

A. FUTURE WORK

Several further research opportunities have appeared during the construction

of this work. The first is whether Lowe’s agreement properties could be extended to

model a secrecy property. In non-injective agreement, the participants are attempting

to agree on a certain set of data values. If the participants are unable to agree on

a data value, then there is no integrity for that value. If for instance the data value

was the location of an enemy battle group, and non-injective agreement had not been

established, then the receiving participant might choose not to believe, borrowing a

term from BAN logic, that the location is accurate. This assumes that there exists

a predefined trust relationship between the two participants in which the receiving

party would believe the results if non-injective agreement was established. In the

other direction, even if a penetrator was able to intercept and read the data value,

believing its contents may also rely on the penetrators ability to reach non-injective

agreement. Therefore, the lack of non-injective agreement might be able to model

secrecy.

In this paper, only authentication properties are modeled using strand spaces.

If Lowe’s agreement properties were used to model secrecy, then that would include

another property that could be modeled using Strand Spaces. Often Strand Spaces

assures secrecy for a data value by proving that the data value could never appear on a

penetrator strand. So, a requirements model for secrecy could look like the illustration

in Figure 16. Strand Spaces might be able to model other security properties by using

relative replacement for certain types of strands.

51

∀ @

A B P

+M - −M ... - −M

Figure 16. Secrecy Requirement Model

52

APPENDIX A. GLOSSARY

accept state a state that determines if a sentence is accepted by a finite
automaton, 14

agreement an extension of non-injective agreement where a participant A
and B agree that the instance of the protocol run was unique, 27

aliveness a type of authentication formalism where a participant, A, of a
protocol agrees that a particular, B, was engaged in a run of the protocol
not necessarily with A, 27

alphabet a set of valid of elements that can be processed by a particular
finite automaton, 14

asymmetric cryptosystem a keyed cryptosystem where a different key is
used to decrypt and encrypt, 4

Authentication Test component a Strand Space component that can be
used to form an Authentication Test, 36

bundle a collection of strands that represents a run of a protocol, 19

cipher text a message whose contents have been altered by a cryptosystem,
4

component a Strand Space term that is either an atomic value or the result
of an encryption, 18

cryptosystem a process for disguising the content of a message, 4

decrypt the process of transforming cipher text into plain text, 4

directed graph a triple consisting of a vertex set, an edge set, and a function
that assigns a pair of vertices to each edge, 19

directional symbol a symbol that is used to label a Strand Space term to
show that it is sent, +, or received, -, 17

efficiency condition a condition for reducing a Strand Space penetrator
strand to a more efficient form, 21

encrypting the process of transforming plain text into cipher text, 4

53

finite automaton a model used for describing certain types of Computer
Science concepts, 14

finite state transducer a finite automaton whose output is a sentence, 15

finite subgraph a graph whose edge set and vertex set are finite, 19

honest participant a participant who follows the rules of the protocol as
they pertain to the participant’s role, 18

incoming test an Authentication Test where an encrypted component that
was sent is received in an unencrypted form, 36

infiltrated Strand Space a Strand Space that includes a penetrator strand,
18

initiator the participant that begins a protocol instance, 17

negative term a Strand Space term that is received, 17

non-injective agreement a type of authentication formalism where a par-
ticipant, A, of a protocol agrees that a participant, B, was acting as a
responder in a run of the protocol with A, where both participants agree
on a set of data values, 27 , 27

nonce a freshly generated value used to identify unique instances of messages
in a protocol, 17

Normal Form lemma a condition on the Strand Space penetrator strand
that restricts the order that certain operations can occur, 21

outgoing test an Authentication Test where a component that was sent in
an encrypted form is received in unencrypted form, 36

path through C any finite sequence of nodes and edges, 20

penetrator strand a strand that represents the actions of dishonest partic-
ipants in a protocol, 18

plain text a message that is in its original form, 4

positive term a Strand Space term that sent, 17

regular strand a strand that represents the actions of honest participants in
a protocol, 18

54

responder the participant that responds to the initiators request to begin an
instance of the protocol, 17

sentence a sequence of elements from an alphabet, 14

start state the initial state of a finite automaton, 14

strand a sequence of communication events that represents the local view of
a protocol run, 17

Strand Space the set of possible strands for a given protocol, 18

subgraph a graph whose vertex set and/or edge set are a subset of another
graph, 19

subterm a term that is part of another term, 17

symmetric cryptosystem a keyed cryptosystem where the same key is used
to encrypt and decrypt, 4

term an element of the set of possible messages for a given protocol, 17

transition function the function used to determine how a finite automaton
changes state given a element of the alphabet, 14

unsigned term a term that has no directional symbol assigned to it, 17

weak agreement a type of authentication formalism where a participant, A,
of a protocol agrees that a participant, B, was engaged in a run of the
protocol with A, 27

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

LIST OF REFERENCES

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi cal-
culus. In Fourth ACM Conference on Computer and Communications Security,
pages 36–47. ACM Press, 1997.

[2] M. Abadi and R. Needham. Prudent engineering practice for cryptographic
protocols. IEEE Transactions on Software Engineering, 22(1):6–15, 1996.

[3] R. Anderson and R. Needham. Robustness principles for public key protocols.
Lecture Notes in Computer Science, 963:236–247, 1995.

[4] S. Bradner. RFC 2026: The Internet standards process — revision 3, Oct. 1996.

[5] R. Carnap. The Logical Syntax of Language. Routledge and Kegan Paul, London,
1937.

[6] S. Convery. Network Security Archiectures, pages 328–329. Cisco Press, Indi-
anapolis, IN, 2004.

[7] Some rights reserved. http://creativecommons.org/learn/aboutus/, 2004. Last
visited: September 2004.

[8] T. E. L. Cynthia E. Irvine and G. W. Dinolt. Diamond high assurance secu-
rity program: Trusted computing exemplar. Technical Report NPS-CS-02-2004,
Naval Postgraudate School, 2002.

[9] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(3):198–208, 1983.

[10] J. C. H. F. Javier Thayer Fábrega and J. D. Guttman. Strand space pictures,
1998.

[11] Federal Aviation Adminstration budget. http://www.dot.gov/bib2004/faa.html,
2004. Last visited: September 2004.

[12] GNU General Public License. http://www.fsf.org/copyleft/gpl.html, 1991. Last
visited: September 2004.

[13] J. Guttman. Security protocol design via authentication tests. In 15th IEEE
Computer Security Foundations Workshop, pages 92–103, 2002.

[14] J. D. Guttman and F. J. Thayer. Authentication tests. In IEEE Symposium on
Security and Privacy, pages 96–109, 2000.

57

[15] M. Heimdahl and C. Heitmeyer. Formal methods for developing high assur-
ance computer systems: Working group report. In Second IEEE Workshop on
Industrial Strength Formal Techniques, 1998.

[16] Isabelle. http://www.cl.cam.ac.uk/Research/HVG/Isabelle/, 2004. Last visited:
September 2004.

[17] ISO. Information processing systems - Open Systems Interconnection - basic
reference model: The basic model. Technical report, International Standards
Organisation, 1994.

[18] ISO. ADO DEL.3: Prevention of modification. In Part 3: Security assurance
requirements, page 87. National Institute of Standards and Technology, 1999.

[19] ISO. Class ADO: Delivery and operation. In Part 3: Security assurance require-
ments, chapter 9. National Institute of Standards and Technology, 1999.

[20] ISO. Common criteria for information technology security evaluation, 1999.
version 2.1.

[21] ISO. Part 3: Security assurance requirements. In Common criteria for in-
formation technology security evaluation. National Institute of Standards and
Technology, 1999.

[22] S. C. J.K. Millen and S. Freedman. The interrogator: Protocol security analysis.
IEEE Transactions on Software Engineering, SE-13(2), 1987.

[23] S. Kent and R. Atkinson. RFC 2401: Security architecture for the Internet
Protocol, Nov. 1998.

[24] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Sys-
tems, 10(4):265–310, 1992.

[25] S. S. Levente Buttyán and U. Wilhelm. A simple logic for authentication protocol
design. In Proceedings of the 11th Computer Security Foundations Workshop.
IEEE Computer Society Press, 1998.

[26] D. Longley and S. Rigby. An automatic search for security flaws in key manage-
ment schemes. Computers and Security, 11(1):75–90, 1992.

[27] G. Lowe. Breaking and fixing the needham-schroeder public key authentication
protocol. Lecture Notes in Computer Science, 1055:147–166, 1997.

[28] G. Lowe. A hierarchy of authentication specifications. In Proceedings of The
10th Computer Security Foundations Workshop. IEEE Computer Society Press,
1997.

58

[29] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Pro-
gramming, 26(2):113–131, 1996.

[30] C. Meadows. Analysis of the internet key exchange protocol using the nrl protocol
analyzer. In Proceedings of the 1999 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 1999.

[31] C. Meadows. What makes a cryptographic protocol secure? the evolution of
requirements specification in formal cryptographic protocol analysis. In Proceed-
ings of ESOP. Springer-Verlag, 2003.

[32] C. A. Meadows. Formal verification of cryptographic protocols: A survey. In
ASIACRYPT: Advances in Cryptology – ASIACRYPT: International Conference
on the Theory and Application of Cryptology. LNCS, Springer-Verlag, 1995.

[33] M. A. Michael Burrows and R. Needham. A logic of authentication. ACM
Transactions in Computer Systems, 8(1):18–36, 1990.

[34] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12), 1978.

[35] J. Postel. RFC 791: Internet Protocol, Sept. 1981.

[36] J. Postel. RFC 793: Transmission control protocol, Sept. 1981.

[37] PVS specification and verification system. http://pvs.csl.sri.com/, 2004. Last
visited: September 2004.

[38] C. M. Richard Kemmerer and J. Millen. Three systems for cryptographic protocol
analysis. Journal of Cryptology, 7(2), 1994.

[39] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Com-
pany, Boston, 1997.

[40] P. Syverson. The use of logics in the analysis of cryptographic protocols. In
IEEE Symposium on Research in Security and Privacy, Oakland, CA, 1991.
IEEE Computer Society Press.

[41] P. Syverson. Limitations on design principles for public key protocols. In IEEE
Symposium on Security and Privacy, pages 62–73, Oakland, CA, 1996. IEEE
Computer Society Press.

[42] J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Proving security protocols
correct. Journal of Computer Security, 1999.

[43] D. B. West. Introduction to Graph Theory - Second edition. Prentice Hall, New
York, 2001.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Dr. George Dinolt
Computer Science Department
Naval Postgraduate School
Monterey, CA

4. Dr. Timothy Levin
Computer Science Department
Naval Postgraduate School
Monterey, CA

5. Dr. Cynthia Irvine
Computer Science Department
Naval Postgraduate School
Monterey, CA

6. Dr. Sylvan S. Pinsky
NSA
Fort Meade, MD

7. Catherine Meadows
Naval Research Laboratory
Washington, DC

8. Gautam Trivedi
Naval Research Laboratory
Washington, DC

9. Joshua D. Guttman
The MITRE Corporation
Bedford, MA

10. Jonathon Herzog
The MITRE Corporation
Bedford, MA

61

11. Dr. Shirley Wilson
North Central College
Naperville, IL

12. Jason Rogers
Naval Postgraduate School
Monterey, CA

62

	signature_page.pdf
	signature_page.pdf
	SECURE DISTRIBUTION OF OPEN SOURCE INFORMATION

